CaraMenentukan Persamaan Garis Singgung Grafik Fungsi Trigonometri 1. Tentukan dahulu titik yang dilalui garis tersebut (misalnya titik (x1, x2). 2. Tentukan turunan fungsi trigonometri tersebut untuk menentukan gradien. 3. Tentukan gradien garis singgung dengan cara mensubstitusi nilai x1 fungsi
Tentukanpersamaan garis singgung fungsi trigonometri dengan. Silvia azkal azkya fgradien garis disi
Materimatematika peminatan kelas 12 persamaan garis singgung fungsi trigonometrimusic by : www.bensound.com
Jadi gradien garis singgung kurva y = f(x) di titik (x 1, y 1) adalah m = f'(x 1). Sehingga persamaan garis singgungnyaa adalah y - y 1 = m (x - x 1). Pada fungsi trigonometri, konsep untuk mencari gradien dari kurva trigonometri juga sama, yaitu dengan memanfaatkan aplikasi turunan fungsi trigonometri.
. Dalam kesempatan ini akan kita bahas tentang cara menentukan persamaan garis singgung fungsi trigonometri pada titik yang melalui grafik tersebut. Dengan menggunakan turunan fungsi kita akan menentukan persamaan garis sinffung fungsi trigonometri. Langkah-langkah menentukan garis singgung fungsi trigonometri sebagai berikut. 1. Tentukan dahulu titik yang dilalui garis tersebut misalnya titik x1, x2. 2. Tentukan turunan fungsi trigonometri tersebut untuk menentukan gradien. 3. Tentukan gradien garis singgung dengan cara mensubstitusi nilai x1 fungsi turunannya, m = f'x1. 4. Menentukan persamaan garis singgung menggunakan rumus dasar y β y1 = mx β x1 . Bagaimana cara menentukan persamaan garis singgung fungsi trigonometri? Perhatikan contoh berikut. Contoh1 Tentukan persamaan garis singgung fungsi y = 3 sin x di titik x = 0. Jawaban Diketahui persamaan fungsi kurva adalah y = 3 sin x. Langkah 1 Menentukan titik Koordinat Sebagai titik singgung Untuk x = 0, maka y = 3 sin 0 = 3 x 0 = 0. Sehingga diperoleh koordinat 0, 0. Langkah 2 Menentukan Gradien di titik Koordinat tersebut y = 3 sin x y' = 3 cos x Gradien garis di titik 0, 0 m = f'0 = 3 cos 0 = 3 Γ 1 = 3 Langkah 3 Menentukan Persamaan garis singgung Persamaan garis singgung di titik 0, 0 dan bergradienm = 3. y β y1 = mx β x1 y β 0 = 3x β 0 y = 3x Jadi, persamaan garis singgung adalah y = 3x. Gambar Contoh 2 Tentukan persamaan garis singgung fungsi y = 2 sin x + cos x, di titik x = 0. Jawaban Diketahui persamaan fungsi kurva adalah y = 2 sin x + cos x. Langkah 1 Menentukan titik Koordinat Sebagai titik singgung Untuk x = 0, maka y = 2 sin 0 + cos 0 = 2 Γ 0 + 1 = 1. Sehingga diperoleh koordinat 0, 1. Langkah 2 Menentukan Gradien di titik Koordinat tersebut y = 2 sin x + cos x y' = 2 cos x - sin x Gradien garis di titik 0, 0 m = f'0 = 2 cos 0 - sin 0 = 2 Γ 1 β 0 = 2 Langkah 3 Menentukan Persamaan garis singgung Persamaan garis singgung di titik 0, 1 dan bergradienm = 2. y β y1 = mx β x1 y β 1 = 2x β 0 y β 1 = 2x y = 2x + 1 Jadi, persamaan garis singgung adalah y = 2x + 1. Gambar Demikianlah sekilas materi tentang cara menentukan persamaan garis singgung pada kurva atau grafik fungsi Trigonometri. Semoga Bermanfaat.
PembahasanTurunan Pertama pada Fungsi Trigonometri Turunan adalah . Misal , maka . Dan , maka . Sehingga diperoleh turunan pertama sebagai berikut Koordinat titik singgung Nilai gradien Persamaan Garis Singgung Jadi, persamaan garis singgung fungsi di titik adalah . Oleh karena itu, jawaban yang benar adalah Pertama pada Fungsi Trigonometri Turunan adalah . Misal , maka . Dan , maka . Sehingga diperoleh turunan pertama sebagai berikut Koordinat titik singgung Nilai gradien Persamaan Garis Singgung Jadi, persamaan garis singgung fungsi di titik adalah . Oleh karena itu, jawaban yang benar adalah E.
PembahasanLangkah pertama Cari titik dengan mensubstitusikan sebagai berikut. Ingat bahwa , maka Dengan demikian, garis akan bersinggungan dengan kurva di titik . Langkah kedua Turunan dari adalah . Cari nilai dengan sifat turunan fungsi trigonometri dan substitusikan Ingat pula bahwa , maka Selanjutnya, substitusikantitik untuk memperoleh persamaan garis singgungnya sebagai berikut. Dengan demikian, persamaan garis singgung kurva pada soal tersebut adalahLangkah pertama Cari titik dengan mensubstitusikan sebagai berikut. Ingat bahwa , maka Dengan demikian, garis akan bersinggungan dengan kurva di titik . Langkah kedua Turunan dari adalah . Cari nilai dengan sifat turunan fungsi trigonometri dan substitusikan Ingat pula bahwa , maka Selanjutnya, substitusikan titik untuk memperoleh persamaan garis singgungnya sebagai berikut. Dengan demikian, persamaan garis singgung kurva pada soal tersebut adalah
Jakarta - Turunan trigonometri adalah suatu persamaan turunan yang melibatkan fungsi-fungsi trigonometri misalnya sin sinus, cos cosinus, tan tangen, cot cotangen, sec secant, dan csc cosecant.Rumus turunan trigonometri digunakan untuk mengetahui tingkat perubahan yang berkaitan dengan suatu memperoleh turunan fungsi trigonometri, maka dengan mencari limit fungsi trigonometri. Hal ini karena turunan adalah bentuk khusus dari limit. Selain itu, turunan dapat menyatakan perubahan fungsi pada ini pembahasan terkait turunan trigonometri mulai dari definisi hingga rumusnya secara Turunan TrigonometriDalam Modul Matematika Kelas XII yang disusun oleh Entis Sutisna, trigonometri adalah salah satu cabang matematika yang berkaitan dengan sudut segitiga dan fungsi trigonometri seperti sin, cos, tan, dan lainnyaSedangkan turunan yaitu laju perubahan suatu fungsi terhadap perubahan peubahnya. Perlu diketahui, turunan fx ditulis f'a dimana tingkat perubahan fungsi ada pada titik turunan trigonometri merupakan proses matematis guna memperoleh turunan pada sebuah fungsi f' dibaca f aksen dapat disebut sebagai suatu fungsi baru. Pada fungsi trigonometri yang biasanya dipakai yaitu sin x, cos x, dan tan Turunan Fungsi TrigonometriJika f x = sin x artinya f 'x = cos xJika f x = cos x artinya f 'x = βsin xJika f x = tan x artinya f 'x = sec2 xJika f x = cot x artinya f 'x = βcsc2xJika f x = sec x artinya f 'x = sec x . tan xJika f x = csc x artinya f 'x = βcsc x . cot xRumus tersebut digunakan untuk memperoleh hasil turunan trigonometri. Lalu bagaimana contoh soalnya?Contoh Soal 1Tentukan y' dari y = -2 cos xJawaby = -2 cos xy' = -2 -sin xMaka, y' = 2 sin xContoh Soal 2Tentukan y' dari y = 4 sin x + 5 cos xJawaby = 3 sin x + 5 cos xy' = 3 cos x + 5 -sin xMaka, y' = 3 cos x - 5 sin xContoh Soal 3Tentukan y' dari y = 4 cos x - 2 sin xJawaby = 4 cos x - 2 sin xy' = 4 -sin x - 2 cos xMaka, y' = -4 sin x - 2 cos xAplikasi Turunan Fungsi TrigonometriTurunan fungsi trigonometri diaplikasikan dalam bidang matematika dan kehidupan nyata, berikut diantaranyaMenentukan kemiringan garis singgung kurva trigonometri y = fxMenentukan kemiringan garis normal terhadap kurva trigonometri y = fxMenentukan persamaan pada garis normal kurva dan garis singgungTurunan fungsi trigonometri dapat dimanfaatkan di berbagai bidang seperti elektronik, pemrograman komputer, dan pemodelan fungsi siklik yang berbedaMenentukan nilai maksimum dan minimum dari fungsi pembahasan terkait turunan trigonometri yang perlu kamu ketahui. Yuk coba latihan dengan soal turunan lainnya! Simak Video "Dokter Sarankan Tetap Pakai Masker saat Beraktivitas di Luar" [GambasVideo 20detik] pal/pal
persamaan garis singgung fungsi trigonometri